Generative adversarial network-based sinogram super-resolution for computed tomography imaging
نویسندگان
چکیده
منابع مشابه
SRPGAN: Perceptual Generative Adversarial Network for Single Image Super Resolution
Single image super resolution (SISR) is to reconstruct a high resolution image from a single low resolution image. The SISR task has been a very attractive research topic over the last two decades. In recent years, convolutional neural network (CNN) based models have achieved great performance on SISR task. Despite the breakthroughs achieved by using CNN models, there are still some problems re...
متن کاملSimultaneously Color-Depth Super-Resolution with Conditional Generative Adversarial Network
Recently, Generative Adversarial Network (GAN) has been found wide applications in style transfer, image-to-image translation and image super-resolution. In this paper, a colordepth conditional GAN is proposed to concurrently resolve the problems of depth super-resolution and color super-resolution in 3D videos. Firstly, given the low-resolution depth image and low-resolution color image, a gen...
متن کاملHigh-Resolution Computed Tomography Image Reconstruction in Sinogram Space
An important part of any computed tomography (CT) system is the reconstruction method, which transforms the measured data into images. Reconstruction methods for CT can be either analytical or iterative. The analytical methods can be exact, by exact projector inversion, or nonexact based on Back projection (BP). The BP methods are attractive because of their simplicity and low computational cos...
متن کاملReconstruction of High-Resolution Computed Tomography Image in Sinogram Space
An important part of any computed tomography (CT) system is the reconstruction method, which transforms the measured data into images. Reconstruction methods for CT can be either analytical or iterative. The analytical methods can be exact, by exact projector inversion, or non-exact based on Back projection (BP). The BP methods are attractive because of thier simplicity and low computational co...
متن کاملEnergy-based Generative Adversarial Network
We introduce the “Energy-based Generative Adversarial Network” model (EBGAN) which views the discriminator as an energy function that associates low energies with the regions near the data manifold and higher energies with other regions. Similar to the probabilistic GANs, a generator is trained to produce contrastive samples with minimal energies, while the discriminator is trained to assign hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics in Medicine & Biology
سال: 2020
ISSN: 1361-6560
DOI: 10.1088/1361-6560/abc12f